Evolutionarily conserved transcription factor Apontic controls the G1/S progression by inducing cyclin E during eye development.
نویسندگان
چکیده
During Drosophila eye development, differentiation initiates in the posterior region of the eye disk and progresses anteriorly as a wave marked by the morphogenetic furrow (MF), which demarcates the boundary between anterior undifferentiated cells and posterior differentiated photoreceptors. However, the mechanism underlying the regulation of gene expression immediately before the onset of differentiation remains unclear. Here, we show that Apontic (Apt), which is an evolutionarily conserved transcription factor, is expressed in the differentiating cells posterior to the MF. Moreover, it directly induces the expression of cyclin E and is also required for the G1-to-S phase transition, which is known to be essential for the initiation of cell differentiation at the MF. These observations identify a pathway crucial for eye development, governed by a mechanism in which Cyclin E promotes the G1-to-S phase transition when regulated by Apt.
منابع مشابه
Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc.
During animal development, cell proliferation is controlled in many cases by regulation of the G1 to S phase transition. Studies of mammalian tissue culture cells have shown that the G1-specific cyclin, cyclin E, can be rate limiting for progression from G1 to S phase. During Drosophila development, down-regulation of cyclin E is required for G1 arrest in terminally differentiating embryonic ep...
متن کاملdecapentaplegic is required for arrest in G1 phase during Drosophila eye development.
During eye development in Drosophila, cell cycle progression is coordinated with differentiation. Prior to differentiation, cells arrest in G1 phase anterior to and within the morphogenetic furrow. We show that Decapentaplegic (Dpp), a TGF-&bgr; family member, is required to establish this G1 arrest, since Dpp-unresponsive cells located in the anterior half of the morphogenetic furrow show ecto...
متن کاملNegative Regulation of dE2F1 by Cyclin-Dependent Kinases Controls Cell Cycle Timing
Many types of cells compensate for induced alterations in the length of one cell cycle phase (G1, S, or G2) by altering the lengths of the other phases. Here we show that, when cells in Drosophila wing discs are delayed in G1, they maintain normal division rates by accelerating passage through S and G2. Similarly, when G2-->M progression is retarded, G1-->S progression accelerates. This compens...
متن کاملDirect repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition.
Zinc finger transcription factors of the Snail/Slug and ZEB-1/SIP1 families control epithelial-mesenchymal transitions in development in cancer. Here, we studied SIP1-regulated mesenchymal conversion of epidermoid A431 cells. We found that concomitant with inducing invasive phenotype, SIP1 inhibited expression of cyclin D1 and induced hypophosphorylation of the Rb tumor suppressor protein. Repr...
متن کاملAutoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression.
Both positive and negative signals govern the progression of cells from G1 into S phase, and a variety of data implicate the E2F transcription factor as a target for the action of one class of negative regulators, the Rb family of growth suppressors. We now find that the E2F1 gene, which encodes one of the components of E2F activity, is subject to autoregulatory control during progression from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 26 شماره
صفحات -
تاریخ انتشار 2014